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Circular polarization induced by scintillation in a magnetized medium

J.-P. Macquart* and D. B. Melrose†
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A theory is presented for the development of circular polarization as radio waves propagate through the
turbulent, birefringent interstellar medium. The fourth order moments of the wave field are calculated, and it is
shown that unpolarized incident radiation develops a nonzero variance in circular polarization. A magnetized
turbulent medium causes the Stokes parameters to scintillate in a nonidentical manner. A specific model for
this effect is developed for the case of density fluctuations in a uniform magnetic field.

PACS number~s!: 98.58.Ay, 98.38.Am, 97.60.Gb, 98.54.Gr
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I. INTRODUCTION

Circular polarization observed in radio emission from p
sars and quasars is not understood. Although the emis
mechanisms for these two classes of sources are quite d
ent, both have the common feature that the emission is du
highly relativistic particles in a magnetic field, for which th
polarization should be predominantly linear with a circu
component of order the inverse of the Lorentz factor of
radiating particles. As discussed further below, this intrin
component of circular polarization does not account for
observations. We propose that the circular polarization is
posed as a propagation effect, due the scintillations in
interstellar medium~ISM! @1# which account well for many
of the observed, and otherwise unexplained, time variati
in pulsars and quasars@2,3#. The underlying physics for this
alternative explanation is presented in this paper. We p
pose to discuss the details of the astrophysical applicat
elsewhere.

Scintillations are attributed to scattering of the rad
waves off density inhomogeneities associated with tur
lence in the ISM. The data indicate a power-law model
the turbulence, with the power-law index consistent with
Kolmogorov value~b511/3 in the notation used here! @4#.
The dataset on pulsars is sufficiently large to allow mapp
of the turbulence across the galaxy@5#, implying much stron-
ger scattering at low galactic latitudes, where most puls
are observed, than at high galactic latitudes, where most
sars are observed. A planar wave front becomes rippled
traverses the region of turbulence. Two length scales pla
central role in the theory: the Fresnel scaler F
5(lD/2p)1/2, wherel is the wavelength of the radio wav
andD is the distance between the observer and the scatte
region; and the diffractive scaler diff , over which the fluctua-
tions in the phase decorrelate due to the turbulence. Ph
cally, r diff characterizes the sizes of the ripples, andr F char-
acterizes the size of the coherent patch an observer can
on the unrippled wave front when only the geometric ph
difference is taken into account. ‘‘Weak scattering’’ corr
sponds tor F!r diff , when an observer sees a single coher
patch that is slightly tilted~image displacement! and slightly
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convex ~focused! or concave~defocused!. ‘‘Strong scatter-
ing’’ corresponds tor F@r diff , when an observer sees man
coherent patches of sizer diff within an envelope of sizer ref

5r F
2/r diff , and multipath propagation occurs@6#. Intensity

variations in strong scattering are induced by both diffract
effects, due to interference between the coherent patches
refractive effects, caused by focusing~defocusing! of the ray
bundle due to phase curvature across the scattering d
There is a transition between strong scattering at lower
quencies and weak scattering at higher frequencies. For m
pulsars the transition frequency is higher than the frequ
cies for which data are available, and for quasars the ob
vations span the expected transition frequency,;7 GHz @7#.

Inclusion of the interstellar magnetic field implies that t
ISM is birefringent, and propagation of radiation depen
upon its polarization. In a homogeneous birefringent m
dium, radiation separates into the two oppositely polariz
natural wave modes, with the phase difference between t
increasing linearly with propagation distance. The two wa
fronts corresponding to the two modes become system
cally displaced from each other with increasing distance. T
natural modes in the ISM are circularly polarized to an e
cellent approximation, and the birefringence results in Fa
day rotation of the plane of linear polarization of any inc
dent radiation. The amount of Faraday rotation
parametrized in terms of the rotation measure~RM!, which is
defined such that the phase difference between the
modes is RMl2 @8#. Inhomogeneity combined with birefrin
gence implies that the wave fronts are both rippled and
placed from each other. One implication is that when
wave fronts are recombined, there is a random componen
the phase difference, and the resulting stochastic Fara
rotation is characterized by a variance in RM@9#.

The main point made in the present paper is that sca
ing in the magnetized ISM necessarily leads to a compon
of circular polarization~CP! in the observed radiation. Thi
arises because any lateral displacement of the wave f
implies that the ripples are not superimposed when the
wave fronts are combined. As a result, there are alterna
patches of excess right hand~RH! and excess left hand~LH!
circular polarization on the image in the observer’s plane
this paper we present a detailed theory for such scintillati
induced CP. We argue that the predicted features of the
are sufficiently promising to warrant the development of d
4177 ©2000 The American Physical Society
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tailed models for the observed CP in pulsars and qua
based on it.

CP is observed in both pulsars@10# and in some compac
extragalactic sources@11–14#. Most of the data on pulsar
are integrated over many pulses, and the integrated p
profile typically shows relatively small CP. However, the
is evidence that in at least a few pulsars for which individ
pulses can be studied, the CP is relatively large in individ
pulses and varies from pulse to pulse such that the integr
value is much smaller than the typical value. There is
satisfactory explanation for the CP@15#. A small ~& 0.1% to
a few percent! but significant degree of CP is observed
some compact extragalactic sources@11–14#. The suggested
interpretations include the intrinsic polarization associa
with synchrotron radiation@16#, and partial conversion o
linear into circular polarization due to the ellipticity of th
natural wave modes of the cold background plasma@17# or
of the relativistic electron gas itself@18–20#. However none
of these suggested interpretations has proved satisfacto
accounting for~a! the frequency dependence,~b! the tempo-
ral variations, and~c! the magnitude of the observed circul
polarization@21#. The explanation proposed in this paper
as outlined above. Specifically, for a source with zero intr
sic CP seen through a turbulent magnetized plasma, the
a variable CP which corresponds to a zero average of
Stokes parameterV, ^V&50, but a nonzero variance,^V2&
Þ0. Our initial objective is to use the theory of scintillation
in a magnetized plasma@22–25# to calculatê V2&.

The magnitude of the expected value of the CP need
be of the same order of magnitude as the observed CP fo
theory proposed here to be relevant. For pulsars, the CP
be several tens of percent, but it may be that some of this
results from birefringence in the pulsar magnetosphere its
which we do not consider in detail here. For the most
treme case for quasars, the observed CP can be severa
cent, which is relatively high because there is independ
evidence suggesting that the varying~scintillating in our in-
terpretation! part of the source is only a modest fraction
the entire source. Hence the observations, in the most
treme cases, suggest that the CP of the scintillating com
nent can be as high as a few tens of percent. In the the
developed here, most of the terms that contribute to the
are very small, of order the ratio of the cyclotron frequen
in the ISM to the radio frequency~typically ;1028!, and can
be of no practical interest. However, the effect on which
concentrate can give arbitrarily high CP. This effect is due
birefringent refraction causing an angular separation betw
the emerging rays in the LH and RH polarized wave mod
The displacement of the centroids of the LH and RH ima
increases linearly with the distance from the screen wh
the birefringent refraction occurs. It is possible for the L
and RH images not to overlap, resulting in patches of 10
CP. The angular deviation required to produce relativ
large CP is determined by the ratio of the characteristic s
of the scintillation pattern divided by the distance betwe
the observer and the screen where the birefringent refrac
occurs. Although the angular separation between the ray
always extremely small, we argue elsewhere@26# that ob-
served gradients in RM imply birefringent refraction throu
a sufficiently large angle to satisfy the criterion that obse
able CP be produced.
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Our specific assumptions are explained in Sec. 2, wh
the wave equation is reduced to the form used in treating
scattering. The mutual coherence of a polarized wavefiel
derived in Sec. 3, and is shown to reproduce some kno
results@27,28#. In Sec. 4 the second-order correlations of t
Stokes parameters are derived from the fourth-order mom
of the wave field, and explicit solutions are obtained in t
thin-screen approximation. In Sec. 5 we discuss scintillati
induced CP. The conclusions are presented in Sec. 6.

II. PROPAGATION THROUGH A MAGNETIZED PLASMA

In this section the propagation of radiation through a m
netized stochastic medium is related to its effect upon
electric field of the wave. We start with propagation throu
a homogeneous weakly anisotropic medium and then ge
alize to include the effect of inhomogeneities in the scatt
ing medium. For a weakly inhomogeneous medium the t
wave modes are assumed to be transverse to a zeroth
proximation~the isotropic limit! and the degeneracy betwee
the two transverse states of polarization is broken by
weak anisotropy, to a first approximation. In the first a
proximation the two modes have slightly different refracti
indices, and this approximation suffices to treat Faraday
tation and all the effects of interest here.

The wave equation projected onto the transverse plan
@24#

S 2k2dab1
v2

c2 Kab~v,k! DAb~v,k!50, ~2.1!

whereAa(v,k) is the wave amplitude,Kab(v,k) is the di-
electric tensor, and the greek indices run over the two tra
verse coordinates. We write

Kab5^Kab&1dKab, ~2.2!

where the angular brackets denote the mean anddKab de-
notes a fluctuating part with a mean of zero,^dKab&50. The
transverse components of the dielectric tensor may be
pressed in terms of the Pauli matrices, and for the aver
part we write

^Kab&5KAsA
ab , ~2.3!

where the sum overA5@ I ,Q,U,V# is implied, with

s I
ab5dab5S 1 0

0 1D , sQ
ab5S 1 0

0 21D ,

~2.4!

sU
ab5S 0 1

1 0D , sV
ab5S 0 2 i

i 0 D .

In the discussion here we neglect any dissipation, which
plies that we retain only the Hermitian part ofKab, so the
KA are all real.

The two modes are labeleds56. The modes has a
wave numberks5nsv/c, wherens is the refractive index
for waves in modes, and polarization vectores. It is
straightforward to solve for the dispersion relations, whi
are
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ks
25

v2

c2 $KI1s@KQ
2 1KU

2 1KV
2 #1/2%. ~2.5!

The quantityKI is the dielectric constant in the isotrop
approximation, withKQ

2 1KU
2 1KV

2!KI
2 in the weak anisot-

ropy limit. The polarization vectors in the two-dimension
transverse plane are

es5
~KQ1s@KQ

2 1KU
2 1KV

2 #1/2,KU1 iK V!

$2@KQ
2 1KU

2 1KV
2 #1/2~KQ1s@KQ

2 1KU
2 1KV

2 #1/2!%1/2.

~2.6!

One is always free to orient the coordinate axes such
KU50. On doing so, Eq.~2.6! may be written in the form

es5~1,iTs!, Ts5
KV

KQ1s@KQ
2 1KV

2 #1/2, T1T2521,

~2.7!

whereTs is the axial ratio of the polarization ellipse in th
modes. In the case of Faraday rotation, the wave modes
circularly polarized, which corresponds touTsu51. The cir-
cular polarizations are

er ,l5
1

&
~1,6 i !, ~2.8!

where r and l refer to right and left hands, respectively.
this paper we consider only the circularly polarized appro
mation explicitly, but the general theory is valid for anyTs .

In scattering theory it is conventional to make the pa
bolic approximation to the wave equation@29,30#. This ap-
proximation is related to the paraxial approximation in ge
metric optics, in the sense that there is a favored ray direc
~thez axis in our case!, and that only small deviations from
are considered. In the parabolic approximation the wave fi
is written as the product of a fast varying termeiksz and a
termua(z,r ) that is assumed to be a slowly varying functio
of z in the sense that its second derivative with respectz
may be neglected. The difference betweenk1 and k2 is
introduced explicitly by writingks5k1sdk, which defines
dk. In a homogeneous medium the two phase factorsiksz
include the mean phaseikz, corresponding to the averag
over the two modes, and the phase difference6 idkz be-
tween the components in the two modes relative to
mean.

The inhomogeneities are introduced through a fluctua
part dKab of the dielectric tensor. On making the parabo
approximation to Eq.~2.1!, one obtains the following equa
tions for the propagation of the right- and left-hand polariz
wave fields

S 2ik
]

]z
1¹'

2 1
v2

c2 dK1
2 D ũ11

v2

c2 dK12ũ2e22idkz50,

~2.9!S 2ik
]

]z
1¹'

2 1
v2

c2 dK2
2 D ũ21

v2

c2 dK21ũ1e2idkz50,

where the perturbation terms involve

dKss85es*
aes8

b dKab, ~2.10!
l
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Aa5 (
s56

eikzesũs~z,r !, ũs~z,r !5esus~z,r !eisdkz.

~2.11!

The terms involvingdK12 and dK21 are zero if the
inhomogeneities do not affect the polarization of the natu
modes, that is ifdKab2s I

abdKI is proportional to^Kab&
2s I

ab^KI&. This is the case to an excellent approximation
the fluctuations do not involve the direction of the magne
field, and even for fluctuations that affect the direction of t
magnetic field it is an excellent approximation provided th
the modes are nearly circularly polarized. The extreme c
ditions under which these terms might be non-negligible
ignored here.

Neglecting the terms involvingdK12 and dK21 , the
following relations describe the propagation of the wave a
plitude through a weakly anisotropic inhomogeneous m
dium:

S 2ik
]

]z
1¹'

2 1
v2

c2 dK2
1D ũ150,

~2.12!

S 2ik
]

]z
1¹'

2 1
v2

c2 dK2
2D ũ250.

Equations~2.12! are used as the basis for the theory dev
oped below.

III. SECOND-ORDER MOMENTS OF THE WAVE FIELD

In this section we calculate the average visibilities in ea
of the four Stokes parameters, thus determining the pro
ties of the average image of a scattered source.

A. Ensemble averaged visibilities

Consider a two-element interferometer with receivers
cated at positionsr1 andr2 , that measures the left- and righ
hand circularly polarized components of the electric fie
We define the visibility in a given polarization using th
generalized second-order moment of the electric field:

gss8~z;r1 ,r2!5^us~z;r1!us8
* ~z;r2!&. ~3.1!

The Stokes parameters are defined in terms of the left-
right-hand circularly polarized components of the elect
field for r15r2 : I 2

15u1u1* , I 2
25u2u2* , I 125u1u2* ,

and I 215u2u1* . These are related to the convention
Stokes parametersI, Q, U, andV by

I 5
1

2
~ I 2

11I 2
2!, Q5

1

2
~ I 121I 21!,

U5 i
1

2
~ I 122I 21!, V5

1

2
~ I 2

12I 2
2!, ~3.2!

I 2
15I 1V, I 2

25I 2V, I 125Q2 iU , I 215Q1 iU .

In this notation the Stokes visibilities are
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I ~z;r1 ,r2!5
1

2
@g2

1~z;r1 ,r2!1g2
2~z;r1 ,r2!#,

Q~z;r1 ,r2!5
1

2
@g12~z;r1 ,r2!1g21~z;r1 ,r2!#,

~3.3!

U~z;r1 ,r2!5 i
1

2
@g12~z;r1 ,r2!2g21~z;r1 ,r2!#,

V~z;r1 ,r2!5
1

2
@g2

1~z;r1 ,r2!2g2
2~z;r1 ,r2!#.

Using Eqs.~2.12! and their complex conjugates, the fo
visibilities obey the four propagation equations obtained
settings561 ands8561 in

F2ik
]

]z
1¹1

22¹2
21k2dKss~r1!2k2dKs8s8~r2!G

3gss8~z;r1 ,r2!eidkz~s82s!50. ~3.4!

Due to both the properties of the radiation from the sou
and the stochastic nature of the phase screen, it is desirab
compute the ensemble average visibility, denoted byGss8 .
The ensemble average is considered an average over
time and over the phase fluctuations. It is normally assum
that the phase screen itself is static, with any perceived t
variability due to relative motion between the screen and
source-observer line of sight at some velocityv. This is
known as the frozen screen approximation. An obser
measures the visibility function at timet to be gss8(z;r1
1vt,r21vt). However, if the system is homogeneous th
visibility depends only onr11vt2r22vt, and is therefore
independent oft. Thus the average over time is trivial an
the visibility is a function of relative receiver separatio
only.

On replacing the independent variablesr1 and r2 by r
5r12r2 ands51/2(r11r2), it follows that in a statistically
homogeneous medium the average over the fluctuations
function of r only. The average over the propagation equ
tion ~3.4! then leads to a propagation equation fo
Gss8(z;r )5^gss8(z;r1r 8,r 8)&:

F2ik
]

]z
1¹ r•s1k2jss8~r !GGss8~z;r ,s!eidkz~s82s!50,

~3.5!

jss8~r ,s!5^dKss~0!2dKs8s8~r !&, ~3.6!

with D r "s52(]2/]r x]sx2]2/]r y]sy), r5r xx̂1r yŷ, and s
5sxx̂1syŷ. Suppose that the phase inhomogeneities are
cated on a thin screen of thicknessDz. Then to first order in
Dz, the visibility measured a distancez from the screen is
independent of the screen thickness. It is related to the i
dent visibility Gss8(0;r 8) according to

Gss8~z;r !5S k

2pzD
2

eidk~s82s!E d2r 8d2s8Gss8~0;r 8!

3expF ik~r2r 8!•s8
z

1 iDfss8~r 8!G , ~3.7!
y

e
to

oth
d
e
e

r

a
-
,

o-

i-

Dfss8~z;r 8!5k2E
0

z

dz8jss8~z8;r 8!. ~3.8!

B. Average over phase fluctuations

The average over the random fluctuations on the scree
performed under the assumption that the fluctuations in b
the isotropic and anisotropic terms are Gaussian. The a
age ^exp@idx#&5exp@2^(dx)2&/2# applies for any Gaussian
random variable dx. Writing dfs(r )5*0

zdz8(v/
c)dKss(z8;r ), we make use of this average in defining t
generalized phase structure function:

Dss8~r !52@Css8~0!2Css8~r !#, ~3.9!

Css~r !5^dfs~r 8!dfs8~r 81r !&. ~3.10!

On specializing to the case where the natural wave modes
circularly polarized, the contribution of the isotropic and a
isotropic fluctuations in Eq.~3.9! may be made explicit by
introducing the notationdKss5dKI1sKV , whereKI is the
isotropic component of the tensor andKV is the anisotropic
component.~The elipticity of the modes is determined b
KQ /KV , which is set to zero in assuming that the polariz
tions are circular.! The phase fluctuations may be separa
in an identical manner:dfs(r )5df I(r )1sdfV(r ), with
f I and fV denoting the isotropic and anisotropic comp
nents, respectively. Equations~3.9! are expanded as

D6
2 ~r !5DII ~r !62DIV~r !1DVV~r ! ~3.11!

D67~r !5DII ~r !7DIV~r !6DVI~r !2DVV~r !14CVV~0!,

~3.12!

with

CXY5^dfX~r !dfY~r 81r !&, X,Y5@ I ,V#. ~3.13!

The structure functionDII (r ) represents the effect of th
isotropic phase fluctuations. Fluctuations purely in the ro
tion measure are characterized byDVV which we call the
‘‘rotation measure structure function.’’ The termsDIV and
DVI represent the cross-correlations between in the isotro
and anisotropic phase fluctuations.

Performing the average over the phase fluctuations
denoting the mean anisotropic phasedkz/2 introduced in Eq.
~2.11! by 2fV , the ensemble-averaged mutual coherenc

Gss8~z;r !5S k

2pzD
2E d2r 8d2s8Gss8~0;r 8!

3expF ik~r2r 8!•s8
z

2
Dss8~r 8!

2

1 i ~s2s8!fVG . ~3.14!

Equation~3.3! is inverted atz50 to obtain initial values of
Gss8 in terms of the Stokes parameters at the screenz50:
I (0;r ), Q(0;r ), U(0;r ), and V(0;r ). The ensemble-
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averaged visibilities may therefore be expressed in term
the initial polarization and the generalized phase struc
function as follows:

^I &~z;r !5
I ~0;r !1V~0;r !

2
expF2

1

2
D2

1~r !G
1

I ~0;r !2V~0;r !

2
expF2

1

2
D2

2~r !G ,

^Q&~z;r !5
Q~0;r !2 iU ~0;r !

2
e2ifV expF2

1

2
D12~r !G

1
Q~0;r !1 iU ~0;r !

2
e22ifV expF2

1

2
D21~r !G ,
s
e
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rê U&~z;r !5

iQ~0;r !1U~0;r !

2
e2ifV expF2

1

2
D12~r !G

2
iQ~0;r !2U~0;r !

2
e22ifV expF2

1

2
D21~r !G ,

^V&~z;r !5
I ~0;r !1V~0;r !

2
expF2

1

2
D2

1~r !G
2

I ~0;r !2V~0;r !

2
expF2

1

2
D2

1~r !G .
~3.15!

The assumption that the statistics of the phase fl
tuations are stationary, implies^df I(r )dfV(r1r 8)&
5^dfV(r )df I(r1r 8)&, and henceDIV5DVI . The visibili-
ties reduce to
S ^I &~z;r !

^Q&~z;r !

^U&~z;r !

^V&~z;r !

D 5e2DII ~r !/2S e2DVV~r !/2@^I &~0;r !coshDIV~r !2^V&~0;r !sinhDIV~r !#

eDVV~r !/222CVV~0!$^Q&~0;r !cos 2fV1^U&~0;r !sin 2fV%
eDVV~r !/222CVV~0!$2^Q&~0;r !sin 2fV1^U&~0;r !cos 2fV%
e2DVV~r !/2@2^I &~0;r !sinhDIV~r !1^V&~0;r !coshDIV~r !#

D . ~3.16!
ters

ed

the
of

sed
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cu-
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The mean values of the Stokes parametersI andV are equal
to their incident values; this may be seen by settingr equal
to zero in Eq.~3.15!, and notingDss8(0)50 according to
Eq. ~3.9!. However, even if the initial circular polarization i
zero, its visibility,^V&(z;r ) is nonetheless nonzero by virtu
of the difference betweenD2

1(r ) andD2
2(r ) at nonzeror .

An interferometer may, as opposed to a single dish, there
detect circular polarization from a source even if its radiat
is intrinsically unpolarized. This effect was identified b
Kukushkin and Ol’yak@27,28#. The depolarization of the
linear Stokes visibilities due to stochastic Faraday rotatio
manifested through the term exp@22CVV(0)# @9#.

In a simple model for rotation measure fluctuations in
homogeneous magnetic field~see Sec. IV C!, the resulting
circularly polarized visibility^V&(z;r ) is of order a times
smaller than the mean intensity for initially unpolarized r
diation. Effects of ordera are far too small to be of interes
for the ISM. Nevertheless, it is of formal interest to interp
their origin. In a medium with a homogeneous magnetic fi
one hasdfV5af I , and the phase structure function for th
right-hand polarized wave front is (11a)2DII (r ) and that
for the left-hand polarized wave front is (12a)2DII (r ).
Thus the scale length over which each wave front exp
ences a root-mean-square phase difference of 1 rad di
slightly. This is interpreted in terms of each sense of circu
polarization corresponding to different parameters,r diff1 and
r diff2 , say, for the diffractive scales. Ifa is positive, one has
r diff1,r diff2 , and the left-hand polarized visibilities exten
to larger baselines than the right-hand polarized visibilitie

IV. FOURTH-ORDER MOMENTS OF THE WAVE FIELD

The discussion in Sec. III refers to the ensemble avera
of the Stokes visibilities. In this section we derive the va
re
n

is

-

t
d

i-
rs
r

.

es
-

ance of the visibilities, and hence of the Stokes parame
themselves. The underlying idea is that^V2&Þ0 and ^V&
50 can lead to an observable circular polarization, provid
that the time scale for the fluctuations inV is long compared
with the time scale for an observation.

A. Solution for statistically homogeneous fluctuations

The fourth-order moment of the wave field describes
correlations of the Stokes visibilities. Using the definitions
the Stokes parameters in Eq.~3.2!, the autocorrelation and
cross-correlation of the Stokes visibilities may be expres
in terms of the following generalized fourth-order moment
the electric field:

gs1s2s
18s

28
~z;r1 ,r2 ,r18 ,r28!

5^us1
~z;r1!us2

~z;r2!us
18

* ~z;r18!us
28

* ~z;r28!&.

~4.1!

This moment describes the cross-correlation in the elec
field between four receivers at positionsr1 , r18 , r2 , andr28 ,
each receiver measuring either the right- or left-hand cir
larly polarized component of the radiation according to t
sign of the subscripts1 ,s2 ,s18 ,s28561.

Equations~2.12! are used to derive the following equatio
for generalized fourth-order moment~actually 16 equations
for the 16 moments!:
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S 2ik
]

]z
1¹1

21¹2
22¹18

22¹28
2

1 ikGs1s2s
18s

28
8 ~z;r1 ,r2 ,r18 ,r28! D

3gs1s2s
18s

28
~z;r1 ,r2 ,r18 ,r28!50, ~4.2!

with Gs1s2s
18s

28
8 being the ensemble average over the ph

fluctuations. Fors11s22s182s28Þ0, the following result
holds:

Gs1s2s
18s

28
8 ~z;r1 ,r2 ,r18 ,r28!

5Dz;s1s
18

8 ~r12r18!1Ds1s
28

8 ~z;r12r28!1Ds2s
18

8 ~z;r22r18!

1Ds2s
28

8 ~z;r22r28!2Ds1s2
8 ~z;r12r2!

2Dz;s
18s

28
8 ~r182r28!12ifV~s11s22s182s28!, ~4.3!

where the primes onGs1s2s
18s

28
(z;r1 ,r2 ,r18 ,r28), D(z;r ), and

fV denote derivatives with respect toz, and the dependenc
of fV8 on z is implicit.

Changing coordinates to

R5
1

4
~r11r21r181r28!,

r5r11r22r182r28 ,
~4.4!

r15
1

2
~r12r21r182r28!,

r25
1

2
~r12r22r181r28!,

it is evident thatGs1s2s
18s

28
does not depend onR in a ho-

mogeneous medium, and this also enables us to eliminar
as a parameter. In view of this simplification it is convenie
to change notation, replacinggs1s2s

18s
28
(z;R,r ,r1 ,r2) by

Gs1s2s
18s

28
(z;r1 ,r2). Equation~4.2! becomes

F2ik
]

]z
12¹r1

•¹r2
1 ikGs1s2s

18s
28

8 ~z;r1 ,r2!G
3Gs1s2s

18s
28
~z;r1 ,r2!50, ~4.5!

Gs1s2s
18s

28
8 ~z;r1 ,r2!

5Ds1s
18

8 ~z;r2!1Ds1s
28

8 ~z;r1!1Ds2s
18

8 ~z;r1!

1Ds2s
28

8 ~z;r2!2Ds1s2
8 ~z;r11r2!

2Ds
18s

28
8 ~z;r12r2!12ifV8 ~s11s22s182s28!.

~4.6!
e

t

The generalized fourth-order momentGs1s2s
18s

28
(z;r1 ,r2)

describes the correlation between four receivers arranged
parallelogram whose axes arer1 and r2 ~see Fig. 1!. In an
isotropic medium the coordinatesr1 andr2 are interchange-
able,Gs1s2s

18s
28
(z;r1,r2)5Gs1s2s

18s
28
(z;r2 ,r1), ~Sec. 20–13

of Ref. @30#!, but this is not the case in general in an anis
tropic medium.

It is useful to relate the generalized fourth-order mome
to autocorrelation and cross-correlation of the Stokes visib
ties. The 16 terms inGs1s2s

18s
28

are separated into four~s1

5s185s, s25s285s8 with s561, s8561! that involve
only I andV:

Gss8ss8~z,r1 ,r2!5^I 2&~z,r1 ,r2!1~s1s8!^IV&~z,r1 ,r2!

1ss8^V2&~z,r1 ,r2!, ~4.7!

and four ~s15s25s, s185s285s8 and s15s25s, s18
5s285s8 with sÞs8! that involve onlyQ andU:

Gsss8s8~z,r1 ,r2!5^Q2&~z,r1 ,r2!22is^QU&~z,r1 ,r2!

2^U2&~z,r1 ,r2!,

Gss8s8s~z,r1 ,r2!5^Q2&~z,r1 ,r2!1^U2&~z,r1 ,r2!.
~4.8!

The other eight terms involving cross correlations betweeI,
V andQ, U are not discussed here.

B. Solution for a thin screen

A standard approximation in scintillation theory is to a
sume that the phase fluctuations in the medium occur o
thin screen located a distancez from the observer@30,31#.
We assume that the incident wave front is plan
corresponding to a point source atz52`, so that
^XY&(0,r1 ,r2) is independent of the transverse spatial co
dinatesr1 and r2 . This implies that the fourth-order mo
ments incident on the screen are not functions ofr1 or r2 ,
and we henceforth writêXY&(0) for the incident value.

If the source is located at a finite distance it is possible
correct for the spherical nature of the wave front by mak
the substitutions@31#

z→ z1z2

z11z2
, ~4.9!

FIG. 1. Positions of the receivers in calculating fourth-ord
moments@cf. Ishimaru~1978!#.
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r→ z1

z11z2
r , ~4.10!

where z1 is the distance from the source to the scatter
screen andz2 the distance from the screen to the observer
particular, Eq.~4.10! implies that the length scale of fluctua
tions on the observer’s screen is larger by a factorz1
1z2)/z1 compared to the planar case.

The solution of Eq.~4.5! @30# for a planar wave front
incident upon a thin screen located a distancez from the
observer is

Gs1s2s
18s

28
~z,r1 ,r2!5S k

2pzD
2E d2r18d

2r28Gs1s2s
18s

28
~0!

3expF ik~r12r18!•~r22r28!

z

2
1

2 E0

z

dz8Gs1s2s
18s

28
8 ~z;r18 ,r28!G .

~4.11!

With this solution, we use Eqs.~4.7! and ~4.8! to assemble
solutions for the correlations of the Stokes visibilities as

^XY&~z,r1 ,r2!5S k

2pzD
2E d2r18d

2r28

3expF ik~r12r18!•~r22r28!

z
2GII ~r18 ,r28!G

3AXY~r18 ,r28!, ~4.12!

S AII

AIV

AVV

D 5S WII 2WIV WVV

WIV WII 2WVV WIV

WVV 2WIV WII

D S ^I 2&~0!

^IV2&~0!

^V2&~0!
D ,

~4.13!

S AQQ

AQU

AUU

D 5S WQQ 22WQU WUU

WQU WQQ2WUU 2WQU

WUU 2WQU WQQ

D S ^Q2&~0!

^QU2&~0!

^U2&~0!
D ,

where the arguments (r18 ,r28) are omitted, and we introduce

S WII

WIV

WVV

D 5
1

2 S e2a coshb1ea2c

2e2a sinhb
e2a coshb2ea2c

D ,

S WQQ

WQU

WUU

D 5
ea

2 S e2c81d~ f 1 f 8!

id~ f 2 f 8!/2

e2c82d~ f 1 f 8!
D ,

a5GVV~r18 ,r28!, b52GIV~r18 ,r28!,

c52DVV~r28!, c852DVV~r 18!,

d5DVV~r181r28!1DVV~r182r28!28CVV~0!, ~4.14!

f 5exp@DIV~r181r28!2DIV~r182r28!#e24ifV/2,
g
n

f 85exp@2DIV~r181r28!1DIV~r182r28!#e4ifV/2,

GXY~r1 ,r2!5
1

2
@2DXY~r1!12DXY~r2!

2DXY~r11r2!2DXY~r12r2!#,

X,Y5~ I ,V!. ~4.15!

In the absence of a magnetic field, an obvious, althou
important, point is that all the Stokes parameters scintill
like the total intensity. Referring back to the definitions
DIV and DVV in Sec. III, the absence of Faraday rotatio
terms implies thatDIV , DVV , andfV are zero, leaving only
WII , WQQ , and WUU nonzero. In particular, one hasWII
51 andWQQ1WUU51, so the correlation functions diffe
only by a multiplicative constant (^XY&(0)):

^XY&~z,r1 ,r2!5^XY&~0!S k

2pzD
2E d2r18d

2r28

3expF ik~r12r18!•~r22r28!

z
2GII ~r18 ,r28!G ,

~4.16!

XY5@ II ,IV,VV,QQ,UU,QU#.

C. A simple model for rotation measure fluctuations

A simple model is when the fluctuations occur only in t
electron density, with the magnetic field being uniform.
this case the structure functionsDVV andDIV are related to
DII by the parametera5Ve /v, whereVe is the electron
cyclotron frequency andv is the angular frequency of th
radiation. In particular, one hasDVV /a25DIV /a5DII .
Taking a typical value of the magnetic field in the ISM of
mG, and an observing frequency ofn51 GHz, a is of order
1028.

In this case we expand Eqs.~4.14! in terms ofa, where
DIV /DII is of ordera andDVV /DII is of ordera2. Retaining
terms to second order ina, the second-order correlations a
given by Eqs.~4.12!, with

S WII

WIV

WVV

D 5S 11b2/42c/2
b/2

b2/42a1c/2
D ,

~4.17!

S WQQ

WQU

WUU

D 5
1

2 S 11a2c81ge28CVV~0!

he28CVV~0!

11a2c82ge28CVV~0!
D ,

g5cos 4fV1 i sin 4fV@DIV~r182r28!2DIV~r181r28!#

1
1

2
cos 4fV$@DIV~r182r28!2DIV~r181r28!#2

2DVV~r181r28!2DVV~r182r28!2GVV~r18 ,r28!%, ~4.18!
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h5sin 4fV2 i cos 4fV@DIV~r182r28!2DIV~r181r28!#

1
sin 4fV

2
$@DIV~r182r28!2DIV~r181r28!#2

1DVV~r181r28!1DVV~r182r28!1GVV~r18 ,r28!%.

Equations~4.17! and~4.18! are used in the discussion below

V. IDENTIFICATION OF EFFECTS

In this section we discuss the interpretation of Eqs.~4.12!
and ~4.17!, concentrating on the fluctuations in circular p
larization and the total intensity.

Circular polarization

We are concerned with the creation of a circularly pol
ized component, and so we assume the source has no in
sic circular polarization, which corresponds to assum
^V2&(0)50 and^IV&(0)50 in Eq. ~4.12!. The variances in
the visibility and in the StokesV visibility are then

^I 2&~z,r1 ,r2!5^I 2&~0!S k

2pzD
2E d2r18r28

3expF ik~r12r18!•~r22r28!

z
2GII ~r18 ,r28!G

3$11uGIV~r18 ,r28!u22DVV~r28!%, ~5.1!

^V2&~z,r1 ,r2!5^I 2&~0!S k

2pzD
2E d2r18r28

3expF ik~r12r18!•~r22r28!

z
2GII ~r18 ,r28!G

3$2GVV~r1 ,r2!1DVV~r28!

1uGIV~r18 ,r28!u2%. ~5.2!

For convenience in the discussion below, we label the c
tributions to^V2& due toGVV , DVV , and uGIVu2 as ^V2&1 ,
^V2&2 , and^V2&3 in Eq. ~5.2!, respectively.

1. Variations in the total intensity

Before discussing the interpretation of Eq.~5.2!, we re-
view the subject of intensity variations in an isotropic m
dium, because many of the approximations and definiti
are relevant to the anisotropic case. In the strong scatte
regime, intensity variations are due to diffractive scintill
tion, caused by interference between subimages over
scattering disk, and refractive scintillation, due to refract
focusing and defocusing of the entire scattering disk@6#.

Intensity variations in an isotropic medium correspond
the first term in the curly brackets in Eq.~5.1!. Following
Ref. @32# this term may be written in the form
-
in-
g

n-

-
s

ng

he

^I 2& II ~z;r1 ,r2!5S k

2pzD
2E d2r18d

2r28^I
2&~0!

3expF ik~r12r18!•~r22r28!

z G
3$e2D~r18!@11V~r 28 ,r 18!1¯#

1e2D~r28!@11V~r18 ,r28!1¯#%, ~5.3!

V~r1 ,r2!5DII ~r11r2!/21DII ~r12r2!/22DII ~r1!,
~5.4!

where the subscriptII signifies that only isotropic phase fluc
tuations are retained. The approximation made in deriv
Eq. ~5.3! follows by recognizing that, for strong scatterin
the intensity fluctuations are dominated by regions wh
either r18 or r28 are small, and then assumingr 2@r 1 or r 1

@r 2 for these regions respectively. Equation~5.3! is written
compactly in the form

^I 2& II ~z,r1 ,r2!5@212j~z,r1 ,r2!#^I 2&~0!. ~5.5!

The termj is due to the contribution ofV, and is associated
with large scale focusing and defocusing of the entire sc
tering disk, giving rise to so-called ‘‘refractive scintillation’
@6#. The explicit expression forj is

j~z;r1 ,r2!52E d2q

~2p!2 F~q!$12cos~q•r12q2r F
2 !%

3exp@ iq•r22DII ~r12qr F
2 !#. ~5.6!

This term is less than unity in the strong scattering re´gime
@6#. The power spectrum of phase inhomogeneities,F(q), is
defined by

DII ~r !52E d2q

~2p!2 F~q!@12eiq"r#. ~5.7!

A power law spectrumF(q) has the form

F~q!5QII q
2b, qmin,q,qmax, ~5.8!

whereqmin andqmax correspond to the inverses of the out
and inner scales of the scattering medium,r out and r in, re-
spectively, andQII is a constant. The familiar case of Ko
mogorov turbulence corresponds tob5 11

3 . Relating the defi-
nition of the phase structure functionDII (r ) provided by
Ref. @33# to the power spectrum of phase inhomogeneit
@34#, one has

QII 58p3DLCN
2 r e

2l2, ~5.9!

wherer e is the classical radius of the electron,DL is the path
length through the scattering medium, andCN

2 is the electron
density structure constant. Form~5.8! for F(q) is used ex-
tensively below.

Inspection of Eq.~5.5! reveals that the variance of th
intensity scintillations,

^I 2&~z,0,0!2^I 2&~0!5@112j~z,0,0!#^I 2&~0!,
~5.10!
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contains contributions from two terms. The ter
2j(z,0,0)̂ I 2&(0) is associated with refractive scintillation
while the term of magnitudêI 2&(0) is identified with dif-
fractive scintillation.

2. Circular polarization correction terms

We now consider the three terms in Eq.~5.2!, assuming
that fluctuations in the rotation measure are determined
fluctuations in the density alone, implyingDII 5DIV /a
5DVV /a2, with a5Ve /v.

The contribution from the first term, denoted̂V2&1 ,
comes from the regions where eitherr18 or r28 are small. Since
GVV5a2GII , this term may be approximated by referring
Eqs.~5.3! and ~5.6!,

^V2&1~z,r1 ,r2!5a2S K

2pzD
2E dr18dr28^I

2&~0!

3expF ik~r12r18!•~r22r28!

z G
3$exp@2DII ~r 18!#V~r28 ,r18!

1exp@2DII ~r28!#V~r18 ,r28!%,

~5.11!

which may be rewritten as

^V2&1~z,r1 ,r2!5a2^I 2&~0!@j~z,r1 ,r2!1j~z,r2 ,r1!#,
~5.12!

with j given by Eq.~5.6!. Production of circular polarization
due to the term̂V2&1 is associated with the correction ter
in Eq. ~5.6! due to refractive intensity variations.

It is possible to derive an expression for^V2&1 from Eq.
~5.11! directly. Consider the first term in curly brackets
Eq. ~5.11!. The exponential term is only large for smallr18 ,
so it is appropriate to expandV(r28 ,r18) for small r 1 /r 2 :

V~r28 ,r18!'S r 28

r diff
D b22

~b23!~b22!S r 18

r 28
D 2

. ~5.13!

Specializing to the caser15r250, the terms involvingr18
andr28 in curly brackets in Eq.~A3! are interchangeable. On
then has

^V2&1~z,0,0!52a2^I 2&~0!S k

2pzD
2E dr18~b23!~b22!r 1

2

3S 1

r diff
D b22E dr28 expF ikr18•r28

z G r28
b24.

~5.14!

We evaluate the integral overr28 using @35#

E d2r28 exp@ ix•r28#r 2
g5p2g12

G~g/211!

G~2g/2!
x2g22,

~5.15!

which is valid for g.22. The remaining integral overr18
yields
y

^V2&1~z,0,0!5a2^I 2&~0!2b23p21~b23!~b22!

3S r F

r diff
D 2b28 G~b/221!

G~22b/2!
GS 62b

b22D .

~5.16!

Since the modulation index due to refractive intensity var
tions,mref , is of order (r F /r diff)

42b ~see, e.g., Ref.@31#!, Eq.
~5.16! implies a degree of circular polarization of ord
amref ^I

2&1/2. The Appendix details the contribution of^V2&1
when the rotation measure fluctuations are not necess
proportional to the isotropic phase fluctuations.

The contribution due to the term̂V2&2 is also evaluated
by representing the rotation measure structure function
terms of its power spectrum. Evaluating the integrals over18
and r28 in Eq. ~5.2!, the variance in circular polarization du
to the termDVV(r28) is

^V2&2~z,r1 ,r2!52a2^I 2&~0!E d2q
F~q!

~2p!2

3Fexp[2D~r 1!] 2
1

2
$eiq•r2

3exp[2D(r12r F
2q)1e- iq•r2

3exp[2D(r11r F
2q)%G . ~5.17!

For arbitraryr1 and r2 this expression is, in general, com
plex, and unlike^V2&1(z,r1 ,r2), it is not symmetric under
interchange ofr1 and r2 . The circular polarization is a rea
quantity, and Eq.~5.17! can be directly expressed in terms
the Stokes parameterV only for r250, in which case the
expression is real, as required.

The contribution from^V2&2 to the variance in circular
polarization is obtained by settingr15r250 in Eq. ~5.17!.
The integral is approximated using

†12exp@2D~qr F
2 !#‡'H D~qr F

2 !, qmin,q,1/r ref

1, 1/r ref,q,qmax,

~5.18!

to yield

^V2&2~z,0,0!5
a2^I 2&~0!

p
~r ref!

b22F 1

b22
1 lnS 1

qminr ref
D G ,

~5.19!

where we assume that the outer scale is much larger than
refractive scale (L0@r ref). Rewriting QII in terms of r diff ,
one finds the magnitude of the circular polarization,

^V2&2~z,0,0!5a2^I 2&~0! f ~b!S r F

r diff
D 2b24

3F 1

b22
1 lnS 1

qminr ref
D G , ~5.20!

with
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f ~b!522b21
G~b/2!

G~12b/2!
, ~5.21!

for b,4. For b5 11
3 one hasf (b)'0.89. The contribution

of the circular polarization due to this term scales
a2(r ref /r diff)

b22.
The contribution of^V2&3 in a homogeneous magnet

field is evaluated by appealing to the arguments presente
the evaluation of̂ V2&1 . For strong scattering, only the re
gions nearr18'0 and r28'0 contribute. Expanding forr 18
!r 28 and r 28!r 18 , one has

^V2&3~z,r1 ,r2!5a2^I 2&~0!S k

2pzD
2E d2r18d

2r28

3expF ik~r12r18!•~r22r28!

z G
3$e2D~r 18!V2~r28 ,r18!1e2D~r28!V2~r18 ,r28!%.

~5.22!

Consider the second term in curly brackets in Eq.~5.22!. The
exponential ensures that this term is only large for smallr 28 ,
so one may expandV2(r18 ,r28), defined by Eq.~5.4!, for
small r 28 . To second order inr 28/r 18 one has

V2~r18 ,r28!'S r 18

r diff
D 2~b22! ~b22!2~b23!2r 28

4

4r 18
4 .

~5.23!

Recognizing that the two terms inside the curly brackets
Eq. ~5.22! are identical under the replacementr18↔r28 , pro-
vided r15r250, one then has

^V2&3~z,0,0!'2S k

2pzD
2

a2E d2r18d
2r28

3expF ikr18•r28

z
2DII ~r1!G

3
r 1

4DII
2 ~r2!

r 2
4

~b22!2~b23!2

4
. ~5.24!

Now we may evaluate the integral overr28 using Eq.~5.15!.
Then Eq.~5.22! reduces to

^V2&35p^I 2&~0!
a2~b22!2~b23!2

8p2 r F
4b216r diff

422b22b26

3
G~b23!

G~42b!
E d2r1r 1

1022b exp@2DII ~r 18!#. ~5.25!

Now, using

E
0

`

dr1r 1
g exp@2~r /r diff !

b22#5r diff
11g 1

b22
GS 11g

b22D ,

~5.26!

which is valid forb.2, one has
s

in

n

^V2&35a2^I 2&~0!~b22!~b23!222b27

3S r F

r diff
D 4b216

GS 1222b

b22 D G~b23!

G~42b!
. ~5.27!

For strong scattering, the term (r F /r diff)
4b216 is less than

unity. In particular, for a Kolmogorov spectrum of turbule
fluctuations (b5 11

3 ), the root mean square degree of circu
polarization due to this term scales asa(r diff /r F)2/3, less
than unity for strong scattering.

The dominant term iŝV2&2@^V2&1 ,^V2&3 as this is the
only term that allowsA^V2&/^I &a to be much greater than
unity. We retain only this dominant term in the discussi
below.

3. Cross Correlation

So far we discuss only the variance^V2& in StokesV. The
correlation function ^IV& contains additional information
about the propagation-induced circular polarization.

The form of the expression for̂IV&(z,r1 ,r2) in Eq.
~4.12!, in the absence of any intrinsic circular polarization,
of the same form as the expression for^V2&1 , yielding @cf.
Eq. ~5.11!#

^IV&~z,0,0!5^I 2&~z,0,0!S k

2pzD
2E d2r18d

2r28

3expF ikr18•r28

z G$exp@2D~r18!#V IV~r28 ,r18!

1exp@2D~r28!#V IV~r18 ,r28!%, ~5.28!

V IV~r1 ,r2!5DIV~r11r2!1DIV~r12r2!2DIV~r1!.
~5.29!

For a homogeneous magnetic field, one hasV IV(r1 ,r2)
5aV(r1 ,r2) and the cross-correlation is

^IV&~z,0,0!52aj~z,0,0!^I 2&~0!. ~5.30!

Since j(z,0,0) is of order unity, it follows that the cros
correlation is of ordera, rendering this correlation too sma
to be observed.

VI. DISCUSSION AND CONCLUSIONS

Scintillations in a magnetized ISM necessarily lead to
small degree of circular polarization~CP! even for an unpo-
larized source. This occurs because the refractive indices
the two natural wave modes are slightly different, leading
a variety of small effects that are different for the two opp
site CP components. Under the assumption that the fluc
tions involve only the plasma density, these effects are ch
acterized by a single small parameter,a5Ve /v, which is
the ratio of the electron cyclotron frequency at the scatter
screen to the wave frequency. For typical parameters in
ISM, a;1028 is too small for the induced CP to be o
practical interest unless the effect can be enhanced in s
way.

The effect that we identify as of possible practical inter
appears in the variance of the Stokes parameterV, denoted
^V2&. Provided that the time scale of observation is sh
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compared with the time scale on which^V2& changes, a ne
circular polarization of order̂V2&1/2/^I & should be observed
In evaluating^V2& we separate it into three terms,^V2& i , i
51, 2, and 3, and find that each of them is of the fo
^V2& i5a2^I 2&(0)Ai(r F /r diff)

ai, with Ai all of order unity.
For strong scattering,r F@r diff implies ^V2&@a2^I 2& pro-
vided thatai is not too small. For the term̂V2&2 , with a2
52b24510/3 for a Kolmogorov spectrumb511/3, the
numerical factor is large when the scattering is strong. T
term arises from scattering due to the largest structures in
postulated power-law spectrum of fluctuations.

An obvious prediction of this theory is that the observ
degree of CP should reverse randomly on the time scale
which ^V2& changes. However, the simplifying assumptio
we make need to be reconsidered in making a realistic e
mate of both the magnitude and time scale of the fluctuati
in V. In particular, we assume that both the fluctuations t
lead to scintillations in the usual sense and the fluctuatio
rotation measure that cause a separation in the right and
polarizations occur at a single phase screen. The assum
that these two effects occur together is unnecessarily res
tive. The effect that we describe requires~a! that the wave
front be rippled; and~b! that the right and left polarization
be separated, but there is no need for these two effects t
due to the same structures in the ISM. Indeed, the domin
contribution to^V2& is due to the large-scale structures in t
assumed turbulence, and in fact any large-scale magne
structure can act as a ‘‘Faraday wedge’’ in refracting
right and left polarizations into slightly different direction
In principle, the separation between the two circularly pol
ized rays can become arbitrarily large at arbitrarily large d
tances from such a Faraday wedge, leading to nonover
ping right and left-hand polarized images, and so to^V2&
;Š(I 2^I &)2

‹. We propose to develop this idea further a
apply it to the interpretation of observed CP elsewhere.

Furthermore, an exact theory requires knowledge of
turbulent fluctuations in both the orientation and magnitu
of the magnetic field~here assumed to be homogeneous!, and
its correlation with density fluctuations. The turbulence
the ISM is expected to be highly anisotropic with respect
the magnetic field lines. As remarked in Ref.@36#, the fact
that the VLBI images of scatter-broadened images are t
cally only slightly elliptical ~with axial ratios at most;2:1!
implies that the radiation propagates through many regi
with different magnetic field orientations. This is expected
enhance the production of scintillation-induced CP.

We conclude~1! that scintillation-induced CP must occu
due to propagation through the magnetized ISM;~2! that the
simplest estimate that it is of ordera;1028, and so would
be unobservably small, is correct only for the mean value
^V&/^I &; ~3! that the variancêV2&/Š(I 2^I &)2

‹ can be much
larger thana2; and~4! that a more general model that trea
the scintillations and the separation of the opposite circula
polarized rays~‘‘Faraday wedge’’! in different ways is
needed in formulating a theory that will be a useful basis
comparison with observations.
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APPENDIX: CONTRIBUTION OF ŠV2
‹1

We evaluate the contribution of the^V2&1 term when the
structure functionsDII andDVV are not necessarily propor
tional to each other. Writing

DVV~r !5S T

r diff R
D bV22

, ~A1!

the contribution of̂ V2&1 is

^V2&1~z,r1 ,r2!5E dr18dr28^I
2&~0!

3expF ik~r12r18!•~r22r28!

z G ~A2!

3$exp@2DII ~r18!#VVV~r28 ,r18!

1exp@2DII ~r28!#VVV~r18 ,r28!%, ~A3!

where we write

VVV~r2 ,r1!5DVV~r11r2!/21DVV~r12r2!/22DVV~r2!.

~A4!

Consider the first term in curly brackets in Eq.~A3!. The
exponential term is only large for smallr1 , so it is appropri-
ate to expandVVV(r2 ,r1) for small r 1 /r 2 :

VVV~r2 ,r1!'S r 2

r diff R
D bV22

~bV23!~bV22!S r 1

r 2
D 2

.

~A5!

Specializing to the caser15r250, the terms involvingr18
andr28 in curly brackets in Eq.~A3! are interchangeable. On
then has

^V2&1~z,0,0!52^I 2&~0!S k

2pzD
2E dr18~bV23!~bV22!r 1

2

3S 1

r diff R
D bV22E dr28 expF ikr18•r28

z G r2
8bV24.

~A6!

We evaluate the integral overr28 using Eq.~5.15!. The re-
maining integral overr18 is evaluated to yield

^V2&1~z,0,0!5^I 2&~0!2bV23p21~bV23!~bV22!r F
2bV28

3r diff R
22bVr diff

62bV
G~bV/221!

G~22bV/2!
GS 62bV

b22 D .

~A7!

SettingDVV(r )5a2DII (r ), one then hasbV5b and r diff R
22b

5a2r diff
22b , and Eq.~A7! is then proportional to the varianc

due to refractive scintillation, of order (r F /r diff)
822b, which

is consistent with Eq.~5.16!.
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