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Circular polarization induced by scintillation in a magnetized medium
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A theory is presented for the development of circular polarization as radio waves propagate through the
turbulent, birefringent interstellar medium. The fourth order moments of the wave field are calculated, and it is
shown that unpolarized incident radiation develops a nonzero variance in circular polarization. A magnetized
turbulent medium causes the Stokes parameters to scintillate in a nonidentical manner. A specific model for
this effect is developed for the case of density fluctuations in a uniform magnetic field.

PACS numbg(s): 98.58.Ay, 98.38.Am, 97.60.Gb, 98.54.Gr

[. INTRODUCTION convex (focused or concave(defocusedl “Strong scatter-
ing” corresponds ta >r 4, when an observer sees many
Circular polarization observed in radio emission from pul-coherent patches of sizg; within an envelope of sizeg
sars and quasars is not understood. Although the emissioarZ/r ., and multipath propagation occuf§]. Intensity
mechanisms for these two classes of sources are quite diffeyariations in strong scattering are induced by both diffractive
ent, both have the common feature that the emission is due ig¥ects, due to interference between the coherent patches, and
highly relativistic particles in a magnetic field, for which the refractive effects, caused by focusitdgfocusing of the ray
polarization should be predominantly linear with a circulary ;ndie due to phase curvature across the scattering disk.

component of order the inverse of the Lorentz factor of theThere is a transition between strong scattering at lower fre-

radiating part|cI(_es. As d|scu_sse_d further below, this IntrInSICquencies and weak scattering at higher frequencies. For most
component of circular polarization does not account for th

epulsars the transition frequency is higher than the frequen-

observations. We propose that the circular polarization is IM%ias for which data are available, and for quasars the obser-

posed as a propagation effect, due the scintillations in the 2
interstellar mediun{ISM) [1] which account well for many vations span the expected transition frequeney,GHz([7].

of the observed, and otherwise unexplained, time variations Inglusipn 9f the interstellar magnetic field iT“P"eS that the
in pulsars and quasafg,3]. The underlying physics for this ISM is blrefnngen_t, and propagation of radl_atlo_n depends
alternative explanation is presented in this paper. We pro4Pon its polarization. In a homogeneous birefringent me-
pose to discuss the details of the astrophysical applicatiofdum, radiation separates into the two oppositely polarized
elsewhere. natural wave modes, with the phase difference between them
Scintillations are attributed to scattering of the radioincreasing linearly with propagation distance. The two wave
waves off density inhomogeneities associated with turbufronts corresponding to the two modes become systemati-
lence in the ISM. The data indicate a power-law model forcally displaced from each other with increasing distance. The
the turbulence, with the power-law index consistent with thenatural modes in the ISM are circularly polarized to an ex-
Kolmogorov value(8=11/3 in the notation used herg4]. cellent approximation, and the birefringence results in Fara-
The dataset on pulsars is sufficiently large to allow mappinglay rotation of the plane of linear polarization of any inci-
of the turbulence across the gald®y, implying much stron-  dent radiation. The amount of Faraday rotation is
ger scattering at low galactic latitudes, where most pulsarparametrized in terms of the rotation measiR®!), which is
are observed, than at high galactic latitudes, where most quaefined such that the phase difference between the two
sars are observed. A planar wave front becomes rippled asjitodes is RM? [8]. Inhomogeneity combined with birefrin-
traverses the region of turbulence. Two length scales play gence implies that the wave fronts are both rippled and dis-
central role in the theory: the Fresnel scale- placed from each other. One implication is that when the
= (\D/2m)¥2, where\ is the wavelength of the radio wave wave fronts are recombined, there is a random component in
andD is the distance between the observer and the scatteringe phase difference, and the resulting stochastic Faraday
region; and the diffractive scalgy;, over which the fluctua- rotation is characterized by a variance in R8].
tions in the phase decorrelate due to the turbulence. Physi- The main point made in the present paper is that scatter-
cally, r 4 characterizes the sizes of the ripples, apathar-  ing in the magnetized ISM necessarily leads to a component
acterizes the size of the coherent patch an observer can sekcircular polarization(CP) in the observed radiation. This
on the unrippled wave front when only the geometric phasearises because any lateral displacement of the wave front
difference is taken into account. “Weak scattering” corre- implies that the ripples are not superimposed when the two
sponds ta <<r 45, When an observer sees a single coherentvave fronts are combined. As a result, there are alternative
patch that is slightly tiltedimage displacementind slightly  patches of excess right hafidH) and excess left hand.H)
circular polarization on the image in the observer’s plane. In
this paper we present a detailed theory for such scintillation-
*Email address: jpm@physics.usyd.edu.au induced CP. We argue that the predicted features of the CP
"Email address: melrose@physics.usyd.edu.au are sufficiently promising to warrant the development of de-
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tailed models for the observed CP in pulsars and quasars Our specific assumptions are explained in Sec. 2, where
based on it. the wave equation is reduced to the form used in treating the
CP is observed in both pulsgrs0] and in some compact scattering. The mutual coherence of a polarized wavefield is
extragalactic sourcelsl1-14. Most of the data on pulsars derived in Sec. 3, and is shown to reproduce some known
are integrated over many pu|sesl and the integrated pu|§@SU|tS[27,Za. In Sec. 4 the second-order correlations of the
profile typically shows relatively small CP. However, there Stokes parameters are derived from the fourth-order moment
is evidence that in at least a few pulsars for which individualof the wave field, and explicit solutions are obtained in the
pulses can be studied, the CP is relatively large in individua}h'”'scree” approxmatlon_. In Sec. 5 we dlscu_ss scintillation-
pulses and varies from pulse to pulse such that the integratd@duced CP. The conclusions are presented in Sec. 6.
value is much smaller than the typical value. There is no
satisfactory explanation for the G@5]. A small(< 0.1% to  Il. PROPAGATION THROUGH A MAGNETIZED PLASMA
a few percentbut significant degree of CP is observed in
some compact extragalactic sour¢&&—14. The suggested
interpretations include the intrinsic polarization associate
with synchrotron radiatio16], and partial conversion of

In this section the propagation of radiation through a mag-
d’letized stochastic medium is related to its effect upon the
electric field of the wave. We start with propagation through
linear into circular polarization due to the ellipticity of the a.homogeneous weakly anisotropic medlg_m qnd then gener-
natural wave modes of the cold background plagai or _ahze to !nclude the effect qf inhomogeneities in .the scatter-

ing medium. For a weakly inhomogeneous medium the two

of the relativistic eleptron gas !tsd]18—2(‘]. However none wave modes are assumed to be transverse to a zeroth ap-
of these suggested interpretations has proved satisfactory in

. ~ 7 proximation(the isotropic limi} and the degeneracy between
acco“f.“”.‘g for(@) the frequenc_y dependendg) the tempo the two transverse states of polarization is broken by the
ral variations, andc) the magnitude of the observed circular

polarization[21]. The explanation proposed in this paper isweak anisotropy, to a first approximation. In the first ap-
as outlined abo;/e. Specifically, for a source with zero intrin-proxlmatlon the two modes have slightly different refractive

) . indices, and this approximation suffices to treat Faraday ro-
sic CP seen through a turbulent magnetized plasma, there {Stion and all the effects of interest here.

a variable CP which corresponds to a zero average of the : . .
Stokes paramete¥, (V)=0, but a nonzero variancéy?) [24}'he wave equation projected onto the transverse plane is

#0. Our initial objective is to use the theory of scintillations
in a magnetized plasnf@2—-29 to calculate(V?). w2

The magnitude of the expected value of the CP needs to —k26F+ — K%(w,k) | A%(0,k)=0, (2.1
be of the same order of magnitude as the observed CP for the ¢
theory proposed here to be relevant. For pulsars, the CP ca « . . «p : .
be several tens of percent, but it may be that some of this C}grlhergA (w,k) is the wave a”?P"F“dd" (.K) is the di

S ! . ectric tensor, and the greek indices run over the two trans-

results from birefringence in the pulsar magnetosphere |tseh‘? . :

: . . : verse coordinates. We write
which we do not consider in detail here. For the most ex-
treme case for quasars, the observed CP can be several per- KB =(K )+ 6K 2.2
cent, which is relatively high because there is independent ' '
evidence suggesting that the varyitggintillating in our in-  \where the angular brackets denote the mean &¢f de-
terpretation part of the source is only a modest fraction of 5iaq 4 fluctuating part with a mean of zef6K “#)=0. The
the entire source. Hence the observations, in the most €Xansverse components of the dielectric tensor may be ex-

treme cases, suggest that the CP of the scintillating compQsyessed in terms of the Pauli matrices, and for the average
nent can be as high as a few tens of percent. In the theory,t \we write

developed here, most of the terms that contribute to the C
are very small, of order the ratio of the cyclotron frequency (KBYy=K p0%# | 2.3
in the ISM to the radio frequendgypically ~108), and can

be of no practical interest. However, the effect on which wewhere the sum oveA=[1,Q,U,V] is implied, with
concentrate can give arbitrarily high CP. This effect is due to

birefringent refraction causing an angular separation between 1 0 1 0

the emerging rays in the LH and RH polarized wave modes. oP=svP= ( 0 1), oy = ( 0 — 1),

The displacement of the centroids of the LH and RH images

increases linearly with the distance from the screen where 0 1 0 . (2.4
the birefringent refraction occurs. It is possible for the LH o= o= -
and RH images not to overlap, resulting in patches of 100% v 1 0/’ v i 0/

CP. The angular deviation required to produce relatively

large CP is determined by the ratio of the characteristic sizén the discussion here we neglect any dissipation, which im-
of the scintillation pattern divided by the distance betweerplies that we retain only the Hermitian part Kf*?, so the
the observer and the screen where the birefringent refractiod , are all real.

occurs. Although the angular separation between the rays is The two modes are labeled=+. The modes has a
always extremely small, we argue elsewhg2é] that ob- wave numbek,=n, w/c, wheren,, is the refractive index
served gradients in RM imply birefringent refraction throughfor waves in modeco, and polarization vectoe,. It is

a sufficiently large angle to satisfy the criterion that observ-straightforward to solve for the dispersion relations, which
able CP be produced. are
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, 2 12 4 27l and

kg=?—{K,+a[KQ+KU+KV] 2, (2.5

_ _ _ _ _ _ _ A%= > e*%e Ti (z,r), T, (z,r)=e,u,(z,r)e %
The quantityK, is the dielectric constant in the isotropic o=+

approximation, withkK$+ K +K§<K? in the weak anisot- (2.11)
ropy limit. The polarization vectors in the two-dimensional

transverse plane are The terms involvingsK, _ and 6K_, are zero if the

inhomogeneities do not affect the polarization of the natural

(Ko+ ol K&+ KE+KIIM2 Ky +iKy) mooclgs, that is ifoK*#—o{*# 5K, is proportional to(K*#)

€ {2[Ké+ K2+ K\z/]l/z(KQJr(T[K(ZQJr K2+ K217 772 —o"(K)). .ThIS is the case fo an ex_cellept approximation _|f
(2.6) the fluctuations do not mvplve the direction of_the magnetic

field, and even for fluctuations that affect the direction of the

One is always free to orient the coordinate axes such thanagnetic field it is an excellent approximation provided that
Ky=0. On doing so, Eq(2.6) may be written in the form  the modes are nearly circularly polarized. The extreme con-
K ditions under which these terms might be non-negligible are

A B % _ ignored here.
&= (LiT,), To= Ko+ o[ KG+KIH? TeT-=-1 Neglecting the terms involvingK . _ and 6K_ , the

(2.7)  following relations describe the propagation of the wave am-

) ) ) o ) ) plitude through a weakly anisotropic inhomogeneous me-
whereT, is the axial ratio of the polarization ellipse in the gjum:

modeao. In the case of Faraday rotation, the wave modes are

circularly polarized, which corresponds [®,|=1. The cir- A
cular polarizations are 2ik >t Vi+ p oK<, |ty =0,
= (1,+0) 2.8) d o? e
q,| = 1—' 1] . HV 2 _ 2 - —
Y (2|kaz+vi+c26K )u 0.

wherer and| refer to right and left hands, respectively. In Equations(2.12 are used as the basis for the theory devel-
this paper we consider only the circularly polarized approxi-oped below.

mation explicitly, but the general theory is valid for amny.

In scattering theory it is conventional to make the para-
bolic approximation to the wave equati¢29,30. This ap-
proximation is related to the paraxial approximation in geo- |n this section we calculate the average visibilities in each
metric optics, in the sense that there is a favored ray directiopf the four Stokes parameters, thus determining the proper-
(thez axis in our casg and that only small deviations from it tjes of the average image of a scattered source.
are considered. In the parabolic approximation the wave field
is written as the product of a fast varying telse*r‘f_vZ and a A. Ensemble averaged visibilities
termu“(z,r) that is assumed to be a slowly varying function i ) i i
of zin the sense that its second derivative with respeat to ~ Consider a two-element interferometer with receivers lo-
may be neglected. The difference betwden and k_ is cated a.t positions; an.drz, that measures the left- anq rlg_ht-
introduced explicitly by writingk,=k+ o8k, which defines hand qrcularly p_ol_an_zed. components of.the. electpc field.
k. In a homogeneous medium the two phase fadiogz We def!ne the visibility in a given poIarlzatlon using the
include the mean phasiz, corresponding to the average generalized second-order moment of the electric field:
over the two modes, and the phase differenceskz be-
tween the components in the two modes relative to this
mean.

The inhomogeneities are introduced through a fluctuatin
part SK*# of the dielectric tensor. On making the parabolic
approximation to Eq(2.1), one obtains the following equa-
tions for the propagation of the right- and left-hand polarized""nd I+

IIl. SECOND-ORDER MOMENTS OF THE WAVE FIELD

Yoo (ZiT1,12) =(Ug(ZT 1)U (Zi12)). (3.1

The Stokes parameters are defined in terms of the left- and
gight-hand circularly polarized components of the electric
field for ry=r,: 12, =u,u*, 1?_=u_u*, |, _=u,u*,
=u_u%. These are related to the conventional

wave fields Stokes parametets Q, U, andV by
o a w? ~ w? ~ . 1 2 > 1
2|k5+vf+?5r<i u++?5K+_u_e‘2'5kZ=0, =5 0% +17), Q=5 —+1_4),
.9 P IR ~  a2idkz 29 1 1.2
2|k£+Vl+?—6K, u,+075K,+u+e =0, U=|§(I+,—I,+), sz(l +—170), (3.2
where the perturbation terms involve 12, =1+V, 12_=1-V, |,_.=Q—iU, 1_,=0Q+iU.

_xa B a i . oy el
oK 5o =5, 0K, (210 | this notation the Stokes visibilities are
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1 z
I(Z;rl!rZ):E[y2+(z;rl1r2)+’yz*(Z;rl!rZ)]l A(baa"(Z;r’):szodz,go’a"(z,;r/)' (38)
1 .
Q(z;rq,rp)= §[y+,(z;rl,r2)+ v_(Z;r,r)]1, B. Average over phase fluctuations
3.3 The average over the random fluctuations on the screen is
1 ' performed under the assumption that the fluctuations in both
U(z;rq,rp) =i 5[7+—(Z;f1,fz)— Y-+(Zir1,r2)], the isotropic and anisotropic terms are Gaussian. The aver-

age (exdiox])=exd —((6%)?)/2] applies for any Gaussian
1 random variable ox. Writing  8¢,(r)=[§dZ (w/
V(Z;rq,rp)= E[yﬂ(z;rl,rz)— Y2_(Z;r1,10)]. c) 8K ,,(z';r), we make use of this average in defining the
generalized phase structure function:

Using Egs.(2.12 and their complex conjugates, the four
visibilities obey the four propagation equations obtained by Dyor(1)=2[C,y(0)=Cppr(1)], (3.9
settingc=*1 ando’'==*1 in

Co’a’(r):<5¢a(r/)5¢o—’(r,+r)>' (31()

On specializing to the case where the natural wave modes are
circularly polarized, the contribution of the isotropic and an-
isotropic fluctuations in Eq(3.9) may be made explicit by
é'ntroducing the notatiodK ,,= 6K, + oKy, wherekK is the
|ﬁ9tropic component of the tensor aKg, is the anisotropic
component.(The elipticity of the modes is determined by
dfl‘P/KV’ which is set to zero in assuming that the polariza-
Hons are circula). The phase fluctuations may be separated

. J 2 2 2 2
20k - + V3= V3 KK 5 (1) = K2SK g141(12)

X700’(2;r11r2)ei5k2(0—’70')20- (34)

Due to both the properties of the radiation from the sourc
and the stochastic nature of the phase screen, it is desirable
compute the ensemble average visibility, denoted by .
The ensemble average is considered an average over b
time and over the phase fluctuations. It is normally assume ) . .
that the phase screen itself is static, with any perceived tim&' an identical m_anner'aqs,,(r):_6¢,(r)+cr_5¢v(r)_, with
variability due to relative motion between the screen and thé and ¢y denotmg the |_sotrop|c and anisolropic compo-
source-observer line of sight at some velocity This is  NeNts, respectively. Equatiof8.9) are expanded as
known as the frozen screen approximation. An observer
measures the visibility function at timeto be vy, (z;r1 Dzi(r)=D,,(r)tZD,V(r)+DVV(r) (3.11
+vt,r,+vt). However, if the system is homogeneous this
visibility depends only omr;+vt—r,—vt, and is therefore -~ _
independent of. Thus the average over time is trivial and Dox(r)=Dy(r)+=Dy(r) =Dy (r) =Dyy(r) +4Cy\(0),
the visibility is a function of relative receiver separation (3.12
only. _ _ _ with

On replacing the independent variablesandr, by r
=r,—r,ands=1/2(r,+r5,), it follows that in a statistically ,
homogeneous medium the average over the fluctuations is a Cxy=(0x(r)o¢y(r'+1)), X, Y=[I,V]. (3.13

function ofr only. The average over the propagation equa- .
tion (3.4 then leads to a propagation equation for,?rhe structure funct|orD_|,(r) represents the effe.ct of the
o (Z0) =(Your (ZT +17,1")): isotropic phase fluctuations. Fluctuations purely in the rota-

tion measure are characterized by,,, which we call the
J _ . “rotation measure structure function.” The ternis, and
2ik—+ V.ot K2,/ (1) T 5o (Z;1,5)€ K27~ )=, Dy, represent the cross-correlations between in the isotropic
(3.5 and anisotropic phase fluctuations.
Performing the average over the phase fluctuations and
o (1,9 =(K,,(0)— 8K/ ,:(T)), (3.6)  denoting the mean anisotropic pha#ez/2 introduced in Eq.
(2.17) by — ¢y, the ensemble-averaged mutual coherence is
with A,.g=2(0%/drds,— %1dryds,), r=r,&+r,9, and s
=s,X+s,y. Suppose that the phase inhomogeneities are lo-
cated on a thin screen of thicknesg. Then to first order in
Az, the visibility measured a distan@efrom the screen is ] L ,
independent of the screen thickness. It is related to the inci- Xex;{lk(r_r ):8" Dggr(r')

I'yor(zir)=

k 2
- 201 2 !
sz) Jd r'd2s'T,,.(0;r')

dent visibility I' .., (0;r") according to 2
k \2 _ .
Too(zir)= m) CR ﬂ”f d?r'd®s'T ,,/(0;r") ti(o=o")dy|. (3.19

K g Equation(3.3) is inverted atz=0 to obtain initial values of
IK(r—r)-s . , I, in terms of the Stokes parameters at the scizel:
X _ . ga

ex;{ 18 G (r )}’ 3.9 1(0;r), Q(O;r), U(O;r), and V(0;r). The ensemble-
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averaged visibilities may therefore be expressed in terms of iQ(0:r)+U(0;r) . 1
the initial polarization and the generalized phase structurelU)(z;r)= 5 e v EXF{—ED+(Y)}
function as follows:
- |Q(0,r)2 U(O'r)e‘2i¢vex;{—%D_+(r) ,
O+ V(O5r) 1,
<'>(Zvr)—fexl{‘§[’ +(1) 1(0;1) +V(0;r) 1
<V)(z;r):fexp{—§D2+(r)
1(0;r)—V(0;r) 1,
T EX%‘ED (”} 0=V [ 1,
—fexp{—zD +(r)].
. Q(0;n)—=iu(0sr) 2id 1 3.19
(Q)(zn= 2 evexp — 5D () The assumption that the statistics of the phase fluc-

tuations are stationary, implies(S¢(r)d¢y(r+r’))

O;r)+iu(0;r : 1 - ' = isibili-
N Q(0;r) . ( )e‘2'¢Vex;{—§D_+(r) , negié(&);g(fé(rﬂ )), and henceé,,=Dy,. The visibili
|
(N (zr) e PWIDZ[(1)(0;r)coshDy (1) —(V)(0;r)sinhDyy(r)]
Q@) | _ o | €O 2OMOKQ)(0:r)cOS 2y +(U)(0ir)sin 26hy}
<U>(Z;I’) - eva(r)/272va(0){_<Q>(O;r)sin 2¢v+<U>(O}I’)COS?¢V} . (3.16
(V)(z;r) e~ Pw2[ —(1)(0;r)sinhD (1) +{V)(0;r)coshD,y(r)]

The mean values of the Stokes parametexsdV are equal ance of the visibilities, and hence of the Stokes parameters
to their incident values; this may be seen by settirggual  themselves. The underlying idea is that?) =0 and (V)
to zero in Eq.(3.19, and notingD,,,/(0)=0 according to =0 can lead to an observable circular polarization, provided

Eq. (3.9). However, even if the initial circular polarization is  that the time scale for the fluctuations\ifis long compared
zero, its visibility,(V)(z;r) is nonetheless nonzero by virtue \ith the time scale for an observation.

of the difference betweeb?, (r) andD?_(r) at nonzera.
An interferometer may, as opposed to a single dish, therefore
detect circular polarization from a source even if its radiation
is intrinsically unpolarized. This effect was identified by
Kukushkin and Ol'yak[27,28. The depolarization of the ' .
linear Stokes visibil%ies due to stochasﬁc Faraday rotation is The fourth-order momen_t .Of. _the wave field des_cr_lpes the
manifested through the term éxg2Ci\(0)] [9]. correlations of the Stoke_s visibilities. Using the deﬂ_mtlons of
In a simple model for rotation measure fluctuations in athe Stokes parameters in E@.2), the autocorrelation and
homogeneous magnetic fiel[dee Sec. IV § the resulting cross-correlation of the Stokes visibilities may be expressed
circularly polarized visibility(V)(z;r) is of order « times in terms of the following generalized fourth-order moment of
smaller than the mean intensity for initially unpolarized ra-the electric field:
diation. Effects of ordew are far too small to be of interest
for the ISM. Nevertheless, it is of formal interest to interpret
their origin. In a medium with a homogeneous magnetic field
one hasd¢y,= a¢,, and the phase structure function for the * %
right-hand polarized wave front is (1a)?D,(r) and that :<“<’1(Z;r1)u02(2;r2)uoi(2;r1)“oé(z’r2)>-
for the left-hand polarized wave front is {1a)?D(r).
Thus the scale length over which each wave front experi- (4.3)
ences a root-mean-square phase difference of 1 rad differs
slightly. This is interpreted in terms of each sense of circular_ ) o )
p0|arization Corresponding to different parameteﬂﬁfﬁ_ and Th|S moment deSC“beS the CrOSS-COI’relatlon n the eleCtI’IC
rai—, say, for the diffractive scales. i is positive, one has field between four receivers at positions ry, r,, andr,
rair-<rair—» and the left-hand polarized visibilities extend each receiver measuring either the right- or left-hand circu-
to larger baselines than the right-hand polarized visibilities.|arly polarized component of the radiation according to the
sign of the subscriptry,o,,07,05==*1.
Equationg2.12) are used to derive the following equation
The discussion in Sec. Il refers to the ensemble averagder generalized fourth-order mome(dactually 16 equations
of the Stokes visibilities. In this section we derive the vari-for the 16 momenjs

A. Solution for statistically homogeneous fluctuations

. ro
’Y(rla'zrrirré(Lrl!rZ’rl ’r2)

IV. FOURTH-ORDER MOMENTS OF THE WAVE FIELD
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0 2 2 12 12
2IKE+V1+V2—V1 _VZ

H 4 . ’ ’
+|kGUlUZUiUé(z,rl,r2,rl ,r5)

X ’)’(rllrza'i(ré(Z;rler:riyré)zoa (42)

with G’ ., being the ensemble average over the phas
(710'2(1'10'2

fluctuations. Foro,+ o,— 01— 0,#0, the following result
holds:
o, é(z;rl,rz,ri,rg)

(7'1()'20'10'

-Nn' ’ 4 . ’ / . ’
= DMlai(rl—r1)+DUlgé(z,rl—r2)+ Dgzgi(z,rz—rl)

’
+ Dgzgé(Z;rz_ré)_D:rlgz(Zirl_rz)

D)1, (Ti=1)) +2i byl a1+ oo o= 0p),

Z;U':L

4.3

where the primes oGaleUiUé(z;rl,rz,ri ,r5), D(z;r), and
¢y denote derivatives with respect tpand the dependence
of ¢y, on zis implicit.

Changing coordinates to

1
R=Z(r1+r2+ri+r§),

!

r=ri+ro—ri—rj,
(4.4

1
pl=§(r1—r2+r1—ré),

1
Pzzi(rl_rz_r1+r2)a

it is evident thatl’ : does not depend oR in a ho-

0'10'20'10'

mogeneous medium, and this also enables us to elimmate
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* L}
Uy (1)

P,

o U, (6

FIG. 1. Positions of the receivers in calculating fourth-order
momentg cf. Ishimaru(1978].

The generalized fourth-order momeﬁ(,l(,zgigé(z;pl,pz)

describes the correlation between four receivers arranged in a
parallelogram whose axes apg and p, (see Fig. 1L In an
isotropic medium the coordinatgg andp, are interchange-
ablerrrrl(rzrrirré(Z;plipZ) = Fo'l(rztri(ré(Z;pZ vpl) ’ (SeC. 20-13
of Ref.[30]), but this is not the case in general in an aniso-
tropic medium.

It is useful to relate the generalized fourth-order moments
to autocorrelation and cross-correlation of the Stokes visibili-
ties. The 16 terms iﬂ“glgzgigé are separated into fouyr;

=01=0, 0,=0,=0' with o==*1, ¢’ =*1) that involve
only I andV:

FUO”UO”(Z!pl vp2) :<I 2>(val 1p2) + (0-+ 0-,)<IV>(lel 1P2)
+0a0’ (V3)(z,p1.p2), 4.7

and four (oy=0,=0, o;=0s=0' and o,=0,=0, 0]
=o,=0' with o# ¢') that involve onlyQ and U:

Fo’o’o”o”(z7pl!pZ):<Q2>(Z7p11p2)_2iU<QU>(Ziplip2)
_<U2>(Z!plrp2)v

F(r(r’(r’(r(z!pl !pZ) = <Q2>(Z!pl !p2) + <U2>(Z!pl !p2) .
(4.8

as a parameter. In view of this simplification it is convenient| "€ Other eight terms involving cross correlations betwieen

to change notation, replacing(,l(,z(,i(,é(z;R,r,pl,pz) by
Fglazgigé(z;pl,pz). Equation(4.2) becomes
9 o )
2'k5+2Vp1'Vp2+'kGolozaiog(Z'pl"’Z)
(4.5

X Fa'lo'zoioé(Z;pl 1p2) = 01

!

Gol(rz(rioé(Z;pl’pZ)
ZD; (,r(zipz)"’D:r 0,(Z;p1)+D(’T . (Zp1)
171 172 207
+D, (Z:p2) =D, (Zip1+ p2)
272

- D;igé(zipl_l’z)+2i dy(o1+ o, 01— 0).

(4.9

V andQ, U are not discussed here.

B. Solution for a thin screen

A standard approximation in scintillation theory is to as-
sume that the phase fluctuations in the medium occur on a
thin screen located a distaneefrom the observef30,31].

We assume that the incident wave front is planar,
corresponding to a point source a&=—o, so that
(XY)(0,p1,p>) is independent of the transverse spatial coor-
dinatesp, and p,. This implies that the fourth-order mo-
ments incident on the screen are not functionppbr p,,
and we henceforth writ¢XY)(0) for the incident value.

If the source is located at a finite distance it is possible to
correct for the spherical nature of the wave front by making
the substitution$31]

217,
z,+2,’

Z— (4.9)
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z f'=exgd —Dy(r;+ry)+D,(ri—ri)]e*v/2,
1 ‘. (4.10 d w(ry+rz) w(ri—ra]
2,+17,

r—

where z; is the distance from the source to the scattering _ 1
screen and, the distance from the screen to the observer. In Cxvlr1.r2) [2Dxlr1) +2Dxylr2)
particular, Eq(4.10 implies that the length scale of fluctua-
tions on the observer's screen is larger by a factor ( ~Dxy(ri+r2)=Dxy(ri—rs)],
+2,)/z; compared to the planar case.

The solution of Eq.(4.5 [30] for a planar wave front X, Y=(1,V). (4.15
incident upon a thin screen located a distaackom the

observer is o .
In the absence of a magnetic field, an obvious, although

k \2 important, point is that all the Stokes parameters scintillate
Falozaiaé(zirler):(m) f d?r1d?r30 401 00(0) like the total intensity. Referring back to the definitions of
D,y and D,y in Sec. lll, the absence of Faraday rotation

F{lk(r1 ry)-(ro—ry) terms implies thab,,, Dyy, and ¢y, are zero, leaving only

Wi, Wgaq, and Wy, nonzero. In particular, one has,
=1 andWqq+Wyy=1, so the correlation functions differ
only by a multiplicative constan{XY)(0)):

u’ gy U’u”(z rl’ 2)

(41D (XY)(z,r1,r2)=(XY)( 0)( ) f d?rid?r}
With this solution, we use Eq$4.7) and (4.8) to assemble

i : ik(ri—r)-(r;=rp) ,
solutions for the correlations of the Stokes visibilities as xex;{ ;- =G (ry,ra)|,
k 2
<XY>(Z,|'1'V2):(_2 Z) f d’rid’r, (418
7 XY=[11,IV,VV,QQ,UU,QU].
ik(ry—ry)-(ro—r5)
Xex;{ : 12 2 2 Gu(ry,ry)
C. A simple model for rotation measure fluctuations
XAxy(r1.ra), (4.12 A simple model is when the fluctuations occur only in the

electron density, with the magnetic field being uniform. In

Al Wi 2Wiv - Wyv [ (12)(0) this case the structure functiols,,, andD,y are related to
Av = Wiy W,—=Wyy Wy || (1IV3)(0) D, by the parameterr=./w, where(}, is the electron
Ayy Woy 2W,y W, (V?)(0) cyclotron frequency an@ is the angular frequency of the

(4.13 radiation. In particular, one ha®y/a’=D,,/a=D, .
' Taking a typical value of the magnetic field in the ISM of 3

Ago Woqo  —2Wgqyu Wiy (Q%)(0) ,Lfg,sand an observing frequency of 1 GHz, « is of order
_ _ 2 :

Aqu Waou Woo=Wuu  ~Wau <QL§ )0) f, In this case we expand Eq&.14) in terms ofa, where

Auu (U9(0) D, /Dy, is of ordera andDy,, /D, is of ordera?. Retaining

Wyu 2Wqy Woo

) ] terms to second order i, the second-order correlations are
where the arguments {,r;) are omitted, and we introduce given by Eqs(4.12, with

Wi\ (e “coshb+e®* W, 1+b?/4—c/2
Wy | = > 7a—e“"‘3|nhlf;7c , Wy | = b/2 :
Wyy e 2coshb—e Wiy b%/4—a+c/2
W, e ¢ +d(f+f") 17
QQ| g _ ¢+ ge—8Cv(0

Wou | =S| id(f—t2 |, Woq| 4 (1+a—c'+ge *w

2 Wou he 8Cw(®
Wuu e ¢ —d(f+f) N ' ge-8cwi |

Wyu l+a—c’'—ge °~w

a=Gyy(ry.ry), b=2G(ry.ry),

=Co0s +isindedy[Dyy(ri—r5)—Dy(r;+r’

C=2Dy(r}), ¢ =2Du(r}), g Apy dy[Dyy(ri—rs) w(ri+ry)]
1

d=Dyy(r;+r5)+Dyy(r;—ry)—8Cy(0), (4.14 +ECOS%v{[Dlv(rl—rz)—D.v(r1+f2)]2

f=exg Dy (ri+r5) —Dyy(ri—ry)le 44v2, —Dyu(ri+r3) —Dyri—r3) —Gyy(ry,rah, (4.18
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h=sin4¢y—i cos4py[Dy(ri—ry) —Dy(ri+rs)]

sin4g¢ ., L,
+ TV{[Dlv(rl_rz)_D|v(r1+r2)]2

k 2
<|2>u(2:r1.rz)=<—) fd2r1d2r§<|2>(0)

27z

X ex

ik(ry—ry)-(ro—r3)
z

FDyr1 1)+ Dy —r) +Gy(ry,ry}.
x{e P14+ Q(r) 1)) +---]

Equationg4.17) and(4.18 are used in the discussion below. +e—D(r§)[1+Q(r, )+ (5.3
19 1 .

Q(ry,ro)=D(r{+r,)/2+D (r{—r,)/2—D,/(ry),
V. IDENTIFICATION OF EFFECTS (rurz) n{ratrz) n{ra=rz) 1) (5.4

In this section we discuss the interpretation of B4s12)  \yhere the subscript signifies that only isotropic phase fluc-
and (4.17), concentrating on the fluctuations in circular po- yations are retained. The approximation made in deriving
larization and the total intensity. Eq. (5.3 follows by recognizing that, for strong scattering,
the intensity fluctuations are dominated by regions where
eitherr; or r; are small, and then assumimg>r, or r

>r, for these regions respectively. Equatig) is written
We are concerned with the creation of a circularly polar-compactly in the form

ized component, and so we assume the source has no intrin-

Circular polarization

sic circular polarization, which corresponds to assuming (I%(z,ry,r)=[2+2&(z,r1,r)1(1%(0). (5.5
(V2)(0)=0 and({IV)(0)=0 in Eqg.(4.12. The variances in ) o ) ]
the visibility and in the Stoke¥ visibility are then The termé is due to the contribution of?, and is associated

with large scale focusing and defocusing of the entire scat-

5 5 k |2 2,11 tering disk, giving rise to so-called “refractive scintillation”
(1) (zZ,r1,12)=(19)(0) 77 fd rir; [6]. The explicit expression fof is
k r _r/ . r _r/ dzq
><exr{I (ry li (rz 2)—G,,(r1,r§)} é(Z;rl,r2)=2f —(277)2q)(q){l—COS(q'pl_qzrlZ:)}
X{L+[G(ry,r)P=Dyu(rp)}, (5.1 xexdig: p~Du(pr=ard)] 5.6

This term is less than unity in the strong scatteringime
[6]. The power spectrum of phase inhomogeneitde§y), is

2
<V2>(z,r1,r2)=<lz)(0)(%) fdzriré defined by
tk(ra—ry)-(r2—r2) D <r>=2j 29 pa1-e) (57
xex;{ 1 1Z 2 2 —G”(ri,ré)} 1 (277_) . .

, A power law spectrunib(q) has the form
X{=Gywu(r1,r2)+Dy(r3)

. d(q)= ~B, << , 5.8
+|le(r1’r2)|2}. (52) (q) Qllq len q qmax ( )
where g, and gmax correspond to the inverses of the outer

_ _ _ ) and inner scales of the scattering mediury, andr;,, re-
For convenience in the discussion below, we label the congpectively, andQ,, is a constant. The familiar case of Kol-

tributions t0<\2/2> due toGyy, Dyy, and|Gyy|* as(V?)1,  mogorov turbulence corresponds@e: & . Relating the defi-
(V¥)2, and(V9)s in Eq. (5.2), respectively. nition of the phase structure functiad, (r) provided by
Ref. [33] to the power spectrum of phase inhomogeneities
1. Variations in the total intensity [34], one has
Before discussing the interpretation of H§.2), we re- Q,=8m3ALC2ra\?, (5.9

view the subject of intensity variations in an isotropic me-
dium, because many of the approximations and definitiongyherer . is the classical radius of the electrai, is the path
are relevant to the anisotropic case. In the strong scatteringngth through the scattering medium, a@ﬁ is the electron

regime, intensity variations are due to diffractive scintilla- density structure constant. For¢8.8) for ®(q) is used ex-
tion, caused by interference between subimages over thgnsively below.

scattering disk, and refractive scintillation, due to refractive |nspection of Eq.(5.5) reveals that the variance of the

focusing and defocusing of the entire scattering ik intensity scintillations,
Intensity variations in an isotropic medium correspond to
the first term in the curly brackets in E¢5.1). Following (12)(2,0,00— (1%)(0)=[1+2£(2,0,001{12)(0),

Ref.[32] this term may be written in the form (5.10
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contains contributions from two terms. The term (V2>1(ZO 0)= 2<|2>(0)2/3 3r Y B-3)(B-2)
2£(2,0,0X12)(0) is associated with refractive scintillation, -

while the term of magnitudél?)(0) is identified with dif- ( TE|\#r(B2-1) (6-8
fractive scintillation. I giff rez-pr2 \p-2;

2. Circular polarization correction terms (5.18

We now consider the three terms in E§.2), assuming  Since the modulation index due to refractive intensity varia-
that fluctuations in the rotation measure are determined byions, m,, is of order ¢ /r4¢)* # (see, e.g., Ref31]), Eq.
fluctuations in the density alone, implyin®,=D,,/a  (5.16 implies a degree of circular polarization of order
=Dyy/a?, with a=Q,/ . am(12)Y2. The Appendix details the contribution ¢¥2),

The contribution from the first term, denote®/?);,  when the rotation measure fluctuations are not necessarily
comes from the regions where eithigror r;, are small. Since  proportional to the isotropic phase fluctuations.

Gyv=a’G,, this term may be approximated by referring to  The contribution due to the tergW/?2), is also evaluated

Egs.(5.3) and(5.6), by representing the rotation measure structure function in
) terms of its power spectrum. Evaluating the integrals oyer
(V2)1(2,11,T5) = (L) f drdrA(12)(0) andr, in Eq. (5.2, the variance in circular polarization due
27z to the termDy,\(r5) is
ik(ry—ry)-(ra—rp)
X ®(q)
eXp[ z (V21,02 =2020900) | dPaz

x{exd — Dy (r)]Q(rs,ry)

1 .
+ex — Dy (1) 10(r].rH)}, x| exp[=D(ry] - 5{e"

(5.11) X exp[—D(r;—r2q)+ei9 "2

which may be rewritten as

(VA 1(Z,r1,12) = a®(12)(0)[&(Z,11,F2) + (2,151 1)],
(.12 For arbitraryr, andr, this expression is, in general, com-
with £ given by Eq.(5.6). Production of circular polarization plex, and unlike(V?)1(z,r,r,), it is not symmetric under
due to the terr{V?), is associated with the correction term interchange of ; andr,. The circular polarization is a real
in Eq. (5.6) due to refractive intensity variations. quantity, and Eq(5.17) can be directly expressed in terms of
It is possible to derive an expression f<0{2>1 from Eq. the Stokes parametéf only for r,=0, in which case the
(5.11) directly. Consider the first term in curly brackets in expression is real, as required.
Eq. (5.11). The exponential term is only large for small, The contribution from(V?), to the variance in circular

so it is appropriate to expar@d(r5,r}) for smallr,/r,: polarization is obtained by setting=r,=0 in Eq. (5.17.
The integral is approximated using

X exp[—D(r;+rzq)}|. (5.17

D(quzi)u qmin<q<1/rref

Al ri)?
n(ré,ri>~(r—_) (ﬁ—3)(ﬂ—2)(—,)- (5.13
o & [1-exd ~D(arp)]l~}

o . . 1’fref<q<QmaXv
Specializing to the casge,=r,=0, the terms involving ; (5.18
andr; in curly brackets in Eq(A3) are interchangeable. One . '
then has to yield

2 2/12 a2<|2>(0) _
(V91(20,00=2aX1%)(0)| 5 —| | dri(B—3)(B— 2)rf (V?),5(2,0,0)= ——— (1?2 +In ,
™ B—2 Aminf ref
1\A2 , Likreng] gy, (5.19
8 " gift f dra ex z |'2 where we assume that the outer scale is much larger than the
(5.14) refractive scale I(p>r,). Rewriting Q,, in terms ofr gy,
' one finds the magnitude of the circular polarization,
We evaluate the integral ove} using[35] 284
e
I(y/2+1) (V2)2(2,0,00=aX(1%)(0)f(B) 7)
J dirhexdix-rylry=m2vt2————x"7"2 dit
T(—y/2)
(5.15 X ! +In( ! ” (5.20
[3—2 Aminf ref

which is valid for y>—2. The remaining integral over;
yields with
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I'(BI2)

f(B)= _ZB_lF(T,B/Z)'

(5.2))

for B<4. For B=3% one hasf(8)=~0.89. The contribution

of the circular polar|zat|on due to this term scales as

a®(F eel ¥ gift) P2

The contribution of(V2); in a homogeneous magnetic
field is evaluated by appealing to the arguments presented in
the evaluation of V2),. For strong scattering, only the re-
gions nearr;~0 andr,~0 contribute. Expanding for
<r, andr,<r;, one has

(VA3(z,ry,rp)= a2<|2>(0)( ) fdz 1d%r5

F{ik(rl—r
X ex

x{e PrVO(r)

1) (ra=ry)
z

1)+ Pr202(r] 1))},
(5.22

Consider the second term in curly brackets in &22). The
exponential ensures that this term is only large for small
so one may expand?(r;,r;), defined by Eq.(5.4), for
smallr;. To second order im,/r; one has

L)w 2 (B-2)%B-3)*
¥ qiff

14
4ar,

Q2(r} ,r§)~(
(5.23

Recognizing that the two terms inside the curly brackets in

Eqg. (5.22 are identical under the replacement-r,, pro-
videdr,=r,=0, one then has

2
azf d?rjd?r)

H ! !
ikri-rg

27z

-

riD{(ra) (B—2)%(B-3)?
X 4

<v2>3<z,0,0>~2(—

_DH(rlﬁ

. (.29

7
ra

Now we may evaluate the integral over using Eq.(5.15.
Then Eq.(5.22) reduces to

a®(B—2)*(B—3)?
812

(VZ)3=m(1%)(0) ref 164 2P026-6

I'(p—3
XF§4’8—,3; d’riry® P exd —Dy(rp]. (5.29
Now, using
f;drlrfeXF[_(r/rdifr)ﬁ_z]=réi?fyBTlZF % ,
(5.26

which is valid for 3>2, one has
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(VB)a=a*(1%)(0)(B-2)(B—3)22%"7
re | 416 (12—2/3) r'(B-3)
X(rd:) ' ra—p = ©27

For strong scattering, the termig/r4¢)** ¢ is less than
unity. In particular, for a Kolmogorov spectrum of turbulent
fluctuatlons B=13%), the root mean square degree of circular
polarization due to this term scales agr 4y /re)%°, less
than unity for strong scattering.

The dominant term i€V?),>(V?2);,(V?); as this is the
only term that allows\{V?)/(I)a to be much greater than
unity. We retain only this dominant term in the discussion
below.

3. Cross Correlation

So far we discuss only the varian¢¢?) in StokesV. The
correlation function{lV) contains additional information
about the propagation-induced circular polarization.

The form of the expression fo(lV)(zr,r,) in Eq.
(4.12), in the absence of any intrinsic circular polarization, is
of the same form as the expression {&),, yielding [cf.

Eq. (5.1D)]

k 2
<|v>(z,0,0)=<|2>(z,0,0)(2—ﬂ) fdzridzré

X exp{

+exd —D(ry) 1Qy(ry.ry)}, (5.28

Qy(r,r2)=Dy(ri+r2)+Dy(ry—rz) —Dyy(ry).
(5.29

For a homogeneous magnetic field, one Hag(ri,r»)
=al)(r,,r,) and the cross-correlation is

Ik/ /

“|{exd —D(r)) 10 (ry.r)

(IV)(2,0,00=2a£(2,0,0(1%)(0). (5.30
Since ¢(z,0,0) is of order unity, it follows that the cross
correlation is of order, rendering this correlation too small
to be observed.

VI. DISCUSSION AND CONCLUSIONS

Scintillations in a magnetized ISM necessarily lead to a
small degree of circular polarizatiqQ€P) even for an unpo-
larized source. This occurs because the refractive indices for
the two natural wave modes are slightly different, leading to
a variety of small effects that are different for the two oppo-
site CP components. Under the assumption that the fluctua-
tions involve only the plasma density, these effects are char-
acterized by a single small parameters=Q./w, which is
the ratio of the electron cyclotron frequency at the scattering
screen to the wave frequency. For typical parameters in the
ISM, a~10 8 is too small for the induced CP to be of
practical interest unless the effect can be enhanced in some
way.

The effect that we identify as of possible practical interest
appears in the variance of the Stokes param¥étedenoted
(V?). Provided that the time scale of observation is short
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compared with the time scale on whi¢k?) changes, a net APPENDIX: CONTRIBUTION OF (V?),

circular polarization of ordefV?)¥?/(1) should be observed. - ’
In evaluating(V?) we separate it into three term&/?); , i We evaluate the contribution of tH&/?), term when the

—1, 2, and 3, and find that each of them is of the formStructure functiond,; andDyy are not necessarily propor-
(V2),= a(12)(0)A(r¢ [T gi)®, with A; all of order unity. ~tional to each other. Writing
For strong scattering>r 4 implies (V2)>a?(12) pro-
vided thata; is not too small. For the tervV?),, with a,
=2[B8—-4=10/3 for a Kolmogorov spectrun8=11/3, the
numerical factor is large when the scattering is strong. This
term arises from scattering due to the largest structures in the contribution of(V2), is
postulated power-law spectrum of fluctuations.

An obvious prediction of this theory is that the observed
degree of CP should reverse randomly on the time scale over (V3 1(Z,r1,r,)= f dridr5(12)(0)
which (V2) changes. However, the simplifying assumptions
we make need to be reconsidered in making a realistic esti- F{ik(rl—ri).(rz—ré)

X ex

T \Bv=2
) (A1)

DVV(r):(rdiffR

mate of both the magnitude and time scale of the fluctuations
in V. In particular, we assume that both the fluctuations that
lead to scintillations in the usual sense and the fluctuation in , .,
rotation measure that cause a separation in the right and left X{exd =Dy (r)JQvv(rz.ry)
polarizations occur at a single phase screen. The assumption _ / -
that these two effects occur together is unnecessarily restric- +exd =Dy (rp)1Qu(ry.ra)}, (A3)
tive. The effect that we describe requirgs that the wave
front be rippled; andb) that the right and left polarizations
be separated, but there is no need for these two effects to be
due to the same structures in the ISM. Indeed, the dominantvv(F2,r1) =Dv\(r1+12)/2+Dy(r1=r2)/2=Dy\(ra).
contribution to{V2) is due to the large-scale structures in the (A4)
assumed turbulence, and in fact any large-scale magnetized ) i ) )
structure can act as a “Faraday wedge” in refracting the Consider the first term in curly brackets in H&3). The
right and left polarizations into slightly different directions. €XPonential term is only large for small, so it is appropri-
In principle, the separation between the two circularly polar-at€ t0 expandy\(r,ry) for smallry/r;:
ized rays can become arbitrarily large at arbitrarily large dis- -2
tances from such a Faraday wedge, leading to nonoverlap- (ot )%<_2 v (B3 (By—2) r
ping right and left-hand polarized images, and so(\6) W2 r i R v v rp)
~{(1=(1))?). We propose to develop this idea further and (AB)
apply it to the interpretation of observed CP elsewhere.

Furthermore, an exact theory requires knowledge of thespecializing to the case,=r,=0, the terms involving |
turbulent fluctuations in both the orientation and magnitud%ndré in Cur|y brackets in Eq(A3) are interchangeab|e_ One

} (A2)

z

where we write

r 2

1 By—4
I’2 .

of the magnetic fieldhere assumed to be homogengpaad  then has

its correlation with density fluctuations. The turbulence in

the ISM is expected to be highly anisotropic with respect to K \2

the magnetic field lines. As remarked in RE36], the fact <V2)l(z,0,0)=2<lz)(0)(—) f dri(By—3)(By—2)r?

that the VLBI images of scatter-broadened images are typi- 27z

cally only slightly elliptical (with axial ratios at most-2:1) 1 \Bv-2 ikr!.r!

implies that the radiation propagates through many regions X ) J dréexr{ L2

with different magnetic field orientations. This is expected to " diff R z

enhance the production of scintillation-induced CP. (AB)
We concludg1) that scintillation-induced CP must occur

due to propagation through the magnetized I38);that the  \ye evaluate the integral ovel, using Eq.(5.195. The re-

simplest estimate that it is of order~10 8, and so would maining integral over/ is evaluated to yield

be unobservably small, is correct only for the mean value of !

(V)I{1); (3) that the variancéV?)/{(1 —(1))?) can be much

larger thane’?; and(4) that a more general model that treats

(V3)1(2,0,00=(12)(0)2%v 37 ~Y(B,—3)(By—2)rzv*°

the scintillations and the separation of the opposite circularly r(By/2—1) [6—8
polarized rays(“Faraday wedge’ in different ways is X rsi;f‘;"rgi;fﬁv v ( VI
needed in formulating a theory that will be a useful basis for I'(2=pvi2) "\ p=2
comparison with observations. (A7)
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